The impressive cooperation between Porsche, Mahle, Trumpf and ZEISS produces a "printed" high-performance piston and thus achieves a milestone in additive manufacturing.
Additive manufacturing offers enormous potential for optimized and new components alike. At Porsche, 3D printing technology is already being employed in several areas. And now, a joint project from Porsche, Mahle and Trumpf, in cooperation with ZEISS, has successfully 3D-printed highly stressed drive components for the first time, using generative processes to manufacture pistons for the high-performance engine of Porsche's top-of-the-line 911 model: the GT2 RS. The entire team headed by Porsche project lead Frank Ickinger is more than pleased: "This makes a performance boost of up to 30 horsepower conceivable with the 700PS twin turbo engine, and with higher levels of efficiency at that." The "printed" high-performance piston project is a total success. A milestone in the history of additive manufacturing.
From powder to high-performance components
Pioneers in additive manufacturing
Quality assurance is essential across the many individual steps of the manufacturing process, from powder to finished component. To meet the specific requirements of this kind of manufacturing, a comprehensive quality assurance process was developed by ZEISS. The goal of the project, apart from manufacturing the piston prototypes and thus improving the efficiency of the components, is to develop an additive manufacturing process capable of meeting the highest quality standards while remaining lean and cost-efficient to make series production possible.
Download the whole story
Interested? Read the whole application story! Fill in your data and download our application story for free.