Relationship between Numerical Aperture and Resolution
The brightness and resolution of an image formed by an objective at a given magnification increases with its NA value, respectively the diameter of the angular aperture (the angle of the light cone collected by the objective). Light rays emanating from the specimen pass through air (or a liquid-based immersion medium) located between the cover glass and the objective’s front lens. The angular aperture is expressed as the angle between the microscope’s optical axis and the direction of the most oblique light rays captured by the objective (see the tutorial figure). Mathematically, the NA is expressed as:
Numerical Aperture (NA) = n · sin(θ) (1)
n is the refractive index of the media in the object space (between the cover glass and the objective’s front lens) and θ is half the full angular aperture. The value of n varies between 1.0 for air and 1.58 for most immersion media used in optical microscopy. The angular aperture, which varies with the objective focal length, is the maximum angle of image-forming light rays diffracted by the specimen that the front lens of the objective can capture when the specimen is in focus. As the objective focal length decreases, the maximum angle between the specimen and the outer diameter of the objective front lens increases, causing a proportional increase in the angular aperture. From the above equation, it is obvious that the NA increases with both the angular aperture and the refractive index of the imaging medium.
Limitations of Numerical Aperture
Theoretically, the maximum angular aperture achievable with a dry (air) microscope objective would be 180 degrees, resulting in a value of 90 degrees for the half angle used in the NA equation. The sine of 90 degrees is one, indicating that the numerical aperture is limited not only by the angular aperture but also by the refractive index of the imaging medium. Most microscope objectives are designed to operate with air (refractive index= 1.0) as the imaging medium between the cover glass and the front lens of the objective. This yields a theoretical maximum NA of 1.00. For practical reasons (available working distance), the highest desirable value for the NA of a dry objective is 0.95 (the half angle of the aperture is approximately 72 degrees). Immersion objectives achieve much higher NAs at the expense of free working distance and spherical aberration sensitivity.