
Volume EM
クライオFIB-SEM
超高分解能で実際の状況に近い状態の細胞ダイナミクスのスナップショットを取得
ワークフローの略図

1
対象の構造が見えるようになるまで、未染色のガラス化試料に集束イオンビームで溝をミリングします。

2
対象の構造の新たに露出した試料表面をイメージングします。このミリングとイメージングのプロセスを、構造が完全にイメージングできるまで繰り返し行います。試料は、プロセス全体を通してガラス化した状態を維持します。

3
取得した電子顕微鏡画像が処理され、デジタルに調整されて3Dデータセットになります。細胞コンパートメントを特定し、セグメント化することができます。

4
セグメント化された3Dデータセットは、視覚化および調査を行い、統計的に分析することができます。
アプリケーション例
円石藻における方解石結晶のバイオミネラリゼーションプロセスを理解する
試料ご提供:S. Sviben & A. Scheffel, Max Planck Insititute Plant Physiology, and L. Bertinetti, Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm, Germany
円石藻エミリアニア・ハクスレイにおける円石の形成
方解石粒とその微細構造環境のビジュアライゼーション
従来の水ベースの試料作製プロトコルでは、水溶性非結晶フェーズのカルシウムである円石藻の微細構造環境のイメージングは困難です。FIB-SEMを極低温条件下で操作することで、実際の状況に近い状態でガラス化した海藻類のイメージングが可能となり、微細構造を3Dで明瞭に観察できます。
ここでは、E. huxleyi(円石藻)の細胞を高圧凍結しました。イメージングプロセス中、試料は凍結状態で維持され、ZEISS Crossbeamを使用して極低温条件下でFIB-SEMデータを取得しました。3D再構築像は、成熟した円石(黄)、発生時の状態(青)と脂肪体(赤)の円石を示しています。