
体表面扫描电子显微镜
高度自动化的切片和体积数据成像
典型工作流程示意图

1
使用安装在SEM样品室内的超薄切片机对树脂包埋的样品进行切割。随后对暴露的样品表面进行成像。重复进行切割和成像过程,直至完整获得感兴趣区域结构的图像。

2
对采集的电镜图像进行处理和对齐形成三维数据集。细胞区室可以被识别和分割。

3
可对经过分割的三维数据集进行可视化、研究和统计分析。
应用实例
了解结构与功能之间的关系


使用集成超薄切片机的蔡司Sigma成像的小鼠大脑,75张序列图像,像素大小为7 nm。切片机设置为每个切片厚度15 nm。
使用集成超薄切片机的蔡司Sigma成像的小鼠大脑,75张序列图像,像素大小为7 nm。切片机设置为每个切片厚度15 nm。
神经元超微结构细节成像
大脑是一个复杂的器官,具有数以百万计的神经元连接和信号传递路径。了解大脑组织的结构与功能之间的关系,有助于我们揭示大脑的复杂性,以便切实而全面地了解神经网络的组织机制;长远来看,还可探索如何通过医疗手段治疗某些疾病。


在2.5 keV、1 μs像素驻留时间和高真空条件下,使用Focal Charge Compensation装置成像的切面样品。比例尺:1 μm。由NCMIR提供。
在2.5 keV、1 μs像素驻留时间和高真空条件下,使用Focal Charge Compensation装置成像的切面样品。比例尺:1 μm。由NCMIR提供。
细胞培养中的神经元成像
体表面扫描电子显微镜(SBF-SEM)是对具有长而细的突起(如树突和轴突)的神经元进行成像和跟踪的理想解决方案。细胞培养物中的神经元尤其难以成像。高比例的非导电树脂使样品容易带荷电。Focal Charge Compensation技术可减轻荷电效应并保证高图像质量。体表面扫描电子显微镜(SBF-SEM)与Focal Charge Compensation相结合能够轻松对神经元超微结构的细节进行成像和分辨。
图像显示了培养海马神经元的三维数据集中的单个切片,而神经元则表达用于染色突触后致密物的PSD95-APEX2(箭头所示)。图像使用蔡司FE-SEM、集成超薄切片机和Focal Charge Compensation采集。由于消除了荷电效应,因此可以看到高分辨率的细胞超微结构,如:细小的树突和连接。
小鼠脑组织中的单个神经元和细胞区室
视频显示了使用体表面扫描电子显微镜采集的小鼠大脑样品的截面图像。该方法所提供的高分辨率在每张切面图像上都清晰可见。单个神经元和细胞区室可被精准识别并沿着z轴进行追踪。