使用蔡司Sigma 300进行软磁复合材料的定量EBSD研究
用于合金研发的显微镜解决方案

对复杂新型合金进行高级分析

实现快速大体积三维成像和微观结构分析

开发新型合金、改进现有合金以及了解合金的特性和行为是数十年来研究的关键议题。随着工业界(尤其是航空、电力、交通、基础设施和汽车等行业)对更优质、成本更低合金的需求日益增长,合金的研发变得尤为关键。合金研发依赖于先进的分析技术,包括各种原位和非原位方法,以准确评估合金的微观结构和性能。

  • 高分辨率扫描电子显微镜用于分辨极小的析出物、金属间化合物、氧化物弥散和其他纳米级特征
  • 高级机器学习用于二维和三维数据分割
  • 多尺度三维断层扫描将多个长度尺度的数据相连
  • X射线显微镜用于原位和非原位样品和亚表面特征的三维成像
失效管道的高温腐蚀和减薄,在50 Pa可变压力下使用SIGMA 300上的C2D探测器拍摄

失效管道的高温腐蚀和减薄,在50 Pa可变压力下使用SIGMA 300上的C2D探测器拍摄

腐蚀对金属结构的影响及失效原因

任何系统都难以避免失效、腐蚀或其他形式的退化。无论退化是快速发生还是渐进形成,在预期内产生还是意外出现,在生产、制造或使用过程中,始终存在失效的可能性。这可能只会带来轻微的不便,也可能会造成灾难性的生命损失。通过实施严格的质量控制措施、采用经过验证的生产方法、进行使用过程中的定期检查,以及对所有失效事件进行彻底的原因分析并在未来采取相应的纠正措施,可以减少失效发生的几率。

即便是制造过程中产生的微小偏差或缺陷(如孔隙、夹杂物、裂纹、残余应力或微观结构中的细微不均匀性),也可能导致严重失效。失效也可能由非正常使用条件下的操作、突发意外事件或计划中的报废所引起。

碳钢在腐蚀性环境中因疲劳而出现的裂纹,使用SIGMA 300的背散射电子成像(BSE)拍摄。

碳钢在腐蚀性环境中因疲劳而出现的裂纹,使用SIGMA 300的背散射电子成像(BSE)拍摄。

显微镜是失效分析和腐蚀评估的关键工具,下列所有技术及其他技术都可用于确定腐蚀的程度、机制和特征,以及失效的根本原因。

  • 光学显微镜
  • 电子显微镜
  • 共聚焦光学显微镜
  • EDS
  • EBSD
  • 拉曼光谱技术
  • X射线计算机断层扫描
  • X射线显微镜
  • FIB-SEM

蔡司软件可轻松关联由不同显微镜采集的多个数据集,显示所有相关特征,并帮助研究人员全面了解突发失效或随时间逐渐退化的过程。

存在多种缺陷的劣质焊缝,使用Xradia 620 Versa拍摄

金属和合金的亚微米三维成像

金属和合金的特性在生产过程的各个环节中都受到其微观结构控制,这包括铸造、锻造、挤压以及加工、焊接、制造和使用等环节。材料微观结构是三维的,在不同方向上可能并不一致,也可能含有孔隙、空洞、裂纹、不同相和其他几何特征。为深入了解这些特征,需要进行高分辨率扫描,包括对所有亚表面特征和密度变化进行完整的三维成像和计算机断层扫描。

由于放大的几何特性,标准X射线计算机断层扫描(CT)在高分辨率下仅可对小尺寸样品进行成像。由于所需的工作距离更长,对于更大的样品,可保持高分辨率(400 nm)。蔡司Xradia 600系列Versa X射线显微镜集成了双级放大架构与高通量X射线源技术,可实现更快的无损扫描、更多的样品扫描、更高的对比噪声比,并且与标准CT系统相比,即使是大样品,也能大幅提高远距离分辨率。

此外,该功能通过LabDCT(衍射衬度断层扫描)得到进一步增强,可实现晶粒晶体取向和微观结构的无损三维成像。这开启了金属合金和多晶材料表征的全新时代,甚至可以利用四维成像实验来研究微观结构演变。

联系蔡司显微镜事业部

联系方式

正在加载表格...

/ 4
下一步:
  • 第1步
  • 第2步
  • 第3步
联系我们
必填信息
选填信息